Интерференция в тонких плёнках.

Рассмотрели явление интерференции световых волн от двух точечных источников света. Однако часто нам приходится иметь дело с протяжёнными источниками света при явлениях интерференции, наблюдаемых в естественных условиях, когда источником света служит участок неба, т.е. рассеянный дневной свет. Наиболее часто встречающийся и весьма важный случай подобного рода имеет место при освещении тонких прозрачных плёнок, когда необходимое для возникновения двух когерентных пучков расщепление световой волны происходит вследствие отражения света передней и задней поверхностями плёнки.

Явление это, известное под названием цветов тонких плёнок, легко наблюдается на мыльных пузырях, на тончайших пленках масла или нефти, плавающих на поверхности воды, и т.д.

Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна, которую можно рассматривать как параллельный пучок волн.

Пластинка отражает два параллельных пучка света, из которых один образовался за счет отражения от верхней поверхности пластинки, второй – вследствие отражения от нижней поверхности каждый из этих пучков представлен только одним лучом).

Рисунок 2. Интерференция в тонких пленках.

При входе в пластинку и при выходе из нее второй пучок претерпевает преломление. Кроме этих двух пучков, пластинка отражает пучки, возникающие в результате трех -, пяти – и т.д. кратного отражения от поверхности пластинки. Однако ввиду их малой интенсивности это пучки принимать во внимание мы не будем. Разность хода, приобретенная лучами 1 и 2 до того, как они сойдутся в точке С, равна , (8) где S1 – длина отрезка ВС; S2 – суммарная длина отрезков АО и ОС; n – показатель преломления пластинки.

Показатель преломления среды, окружающей пластинку, полагаем равным единице, b – толщина пластинки. Из рисунка видно, что

;

,

подставив эти значения в выражение (8) и произведя простые вычисления легко привести формулу (9) для разности хода Δ к виду

. (9)

Однако, при вычислении разности фаз между колебаниями в лучах 1 и 2 нужно, кроме оптической разности хода Δ, учесть возможность изменения фазы волны в точке С, где отражение происходит от границы раздела оптически менее плотной среды. Поэтому фаза волны претерпевает изменение на π. В итоге между 1 и 2 возникает дополнительная разность фаз, равная π. Ее можно учесть, добавив к Δ (или вычтя из нее) половину длины волны в вакууме. В результате получим

(10)

Интенсивность зависит от величины оптической разности хода (10). Соответственно, из условий (5) и (6) при получаются максимумы, а при - минимумы интенсивности (m – целое число).

Тогда условие максимума интенсивности имеет вид

, (11)

а для минимума освещенности имеем

. (12)

При освещении светом плоскопараллельной пластинки (b=const ) результаты интерференции зависят только от углов падения на плёнку. Интерференционная картина имеет вид чередующихся криволинейных тёмных и светлых полос. Каждой из этих полос соответствует определённое значение угла падения. Поэтому они называются полосами или линиями равного наклона. Если оптическая ось линзы L перпендикулярна к поверхности плёнки, полосы равного наклона должны иметь вид концентрических колец с центром в главном фокусе линзы. Это явление используется на практике для весьма точного контроля степени плоскопараллельности тонких прозрачных пластинок; изменение толщины пластинок на величину порядка 10-8 м уже можно обнаружить по искажению формы колец равного наклона.

Интерференционные полосы на поверхности плёнки в виде клина имеют равную освещённость на всех точках поверхности, соответствующих одинаковым толщинам плёнки. Интерференционные полосы параллельны ребру клина. Их называют интерференционными полосами равной толщины.

Формула (10) выведена для случая наблюдения интерференции в отраженном свете. Если интерференционные полосы равного наклона наблюдаются в тонких пластинках или плёнках, находящихся в воздухе на просвет (в проходящем свете), то потери волны при отражении не произойдёт и разность хода Δ будет определяться по формуле (9). Следовательно, оптические разности хода для проходящего и отражённого света отличаются на λ/2, т.е. максимумам интерференции в отражённом свете соответствуют минимумы в проходящем свете, и наоборот.

Кольца Ньютона.

Полосы равной толщины можно получить, если положить плосковыпуклую линзу с большим радиусом кривизны R на плосковыпуклую пластинку. Между ними также образуется воздушный клин. В этом случае полосы равной толщины будут иметь вид колец, которые называются кольцами Ньютона; разность хода интерферирующих лучей, так же и в предыдущем случае, будет определяться по формуле (10).

загрузка...

Определим радиус k-го кольца Ньютона: из треугольника ABC имеем , откуда, пренебрегая b 2, так как R>> b, получим .

Рисунок 3. Кольца Ньютона

Подставляем это выражение в формулу (10):

(13)

Если эта разность хода равна целому числу длин волн (условие максимума интерференции), то для радиуса k-го светлого кольца Ньютона в отраженном свете или тёмного в проходящем имеем:

. (14)

Произведя аналогичные несложные выкладки, получим формулу для определения радиусов тёмных колец в отражённом свете (или светлых в проходящем):

(15).

ис. 1 К КК

При прохождении света через линзы или призмы на каждой из поверхности световой поток частично отражается. В сложных оптических системах, где много линз и призм, проходящий световой поток значительно уменьшается, кроме того, появляются блики. Так, было установлено, что в перископах подводных лодок отражается до 50% входящего в них света. Для устранения этих дефектов применяется приём, который называется просветлением оптики. Сущность этого приёма заключается в том, что оптические поверхности покрываются тонкими плёнками, создающими интерференционные явления. Назначение пленки заключается в гашении отраженного света.

Вопросы для самоконтроля

1) Что называется интерференцией и интерференцией плоских волн?

2) Какие волны называются когерентными?

3) Объясните понятие временной и пространственной когерентности.

4) Что представляет собой интерференция в тонких пленках.

5) Объясните в чем заключается многолучевая интерференция.

СПИСОК ЛИТЕРАТУРЫ

Основная

1. Детлаф, А.А. Курс физики учеб. пособие / А.А. Детлаф, Б.М. Яворский.-7-е изд. Стер.-М. : ИЦ «Академия».-2008.-720 с.

2. Савельев, И.В. Курс физики: в 3т.: Т.1: Механика .Молекулярная физика : учеб.пособие / И.В. Савельев.-4-е изд. стер. – СПб.; М. Краснодар: Лань.-2008.-352 с.

3. Трофимова, Т.И. курс физики: учеб. пособие/ Т.И. Трофимова.- 15-е изд., стер.- М.: ИЦ «Академия», 2007.-560 с.

Дополнительная

1. Фейнман, Р.Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс.– М.: Мир.

Т.1. Современная наука о природе. Законы механики. – 1965. –232 с.

Т. 2. Пространство, время, движение. – 1965. – 168 с.

Т. 3. Излучение. Волны. Кванты. – 1965. – 240 с.

2. Берклеевский курс физики. Т.1,2,3. – М.: Наука, 1984

Т. 1. Китель, Ч. Механика / Ч. Китель, У. Найт, М. Рудерман. – 480 с.

Т. 2. Парселл, Э. Электричество и магнетизм / Э. Парселл. – 448 с.

Т. 3. Крауфорд, Ф. Волны / Ф. Крауфорд – 512 с.

3. Фриш, С.Э. Курс общей физики: в 3 т.: учеб. / С.Э. Фриш, А.В. Тиморева.- СПб.: М.; Краснодар: Лань.-2009.

Т. 1. Физические основы механики. Молекулярная физика. Колебания и волны: учебник - 480 с.

Т.2: Электрические и электромагнитные явления: учебник. – 518 с.

Т. 3. Оптика. Атомная физика : учебник– 656 с.



Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

40 − = 34